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Abstract 

This study used different metric distances to estimate density functions in outlier detection. We 

employed multidimensional scaling for dimension reduction using two metric distances (the 

standardized Euclidean and Minkowski distances).  A local density-based method was applied to three 
methods for outlier detection. We use the criterion for evaluating the performance of outlier approaches 

in this paper is Precision. The Gaussian local density estimation method uses three nearest neighbors 

types (KNN, RNN, and SNN). While in SGR, and Volcano use one kind of nearest neighbor (KNN). 
Extensive experiments on a synthetic dataset have shown that the result of the two distances was 

approximately equal. The RDOS and the VOL methods are more efficient when we increase the number 

of nearest neighbours. The average numbers of outliers increase in the SGR method, when we grow 

NN, the average number of outliers appears weak in the technique. 

 

Keywords: k-nearest neighbor, Reverse nearest neighbor, Shared nearest neighbor, standardized 

Euclidean distance, Minkowski distance. 

 

1. Introduction  

     Researchers can discover outliers in data and 
gain required information that helps in making 

better decisions. If we don't identify all outliers, 

it can lead to false assumptions, biased 
parameter estimation, and inaccurate results. As 

a result, identifying outliers is critical before 

modelling and analysis. Sometimes the 
researcher is interested in Detecting outliers, 

such as credit card [Carcillo et al, 2021], fraud 

detection[Yadav et al, 2021], cybersecurity 

intrusion detection[Kilincer et al, 2021], and 
medical diagnosis[Sun et al, 2018]. In these 

cases, the outliers are core data or the researcher 

interested in cleaning the data from the outliers. 
Several researchers defined the outliers in many 

ways. In general, we can determine the outlier as 

a data point that is considerably different from 
other data points in a way that arrow suspicious 

The observation was generated using a different 

mechanism[Hawkins, 1980]. 

There are numerous methods and approaches for 

detecting outliers. The researcher classified 
them into four groups: Methods of univariate vs 

multivariate. The earlier works in outlier 

detection were in univariate methods. The 

current body of work is concerned with 
multivariate methods. In the second 

categorization, there are three scenarios 

supervised, semi-supervised, and unsupervised 
learning methods. Supervised learning means 

learning by example; this kind of learning 

examines training data and makes new functions 
based on function applications from training 

data. Unsupervised learning seeks to discover 

hidden patterns in unlabeled data. It cannot be 

used directly to a classification issue as the 
output values are unknown. Semi-supervised 

learning lies between the labeled data and 

unlabeled data. Semi-supervised learning aims 
to figure out how combining unlabeled and some 

labeled input affects learning behaviour [Yang 

et al, 2021]. The third categorization is 

parametric and nonparametric. The parametric 
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approach or the statistical method presupposes 

that the underlying distribution for the 
observation is known, often unsuitable for large 

datasets with several dimensions. Numerous 

nonparametric methods exist in the field of data 

mining, such as the distance-based method and 
the density-based method. The final 

classification is global versus local outlier 

methods. The global approach looks for outliers 
that are in relation to the rest of the data points 

in the set. In comparison, the local detection of 

outliers means searching for outliers around a 
local spot and how the data point is isolated with 

respect to its neighborhood.  

An overview of approaches for detecting 

outliers is making assumptions about outliers to 

the rest of the dataset. Following these 
assumptions, some researchers discover outliers 

and categorize them into four types: Model-

based methods. They believe that data points 
created by a statistical model are normal, while 

data points that do not follow the model are 

outliers. 

 Proximity-based methods If the object's nearest 

neighbors are far distant in feature space, 
consider the data point to be an outlier. There are 

two types of proximity-based outlier detection 

methods: density-based and distance-based. in 
detecting outliers based on distance, an item is 

considered an outlier if there aren't enough other 

points in the neighborhood. Outlier detection 
based on density An object is identified as an 

outlier if its density is significantly lower than 

its neighbors. 

Clustering-based methods, large and dense 

clusters contain normal data points while 
outliers are members of small or sparse clusters 

or are not members of any clusters[Zhao et al, 

2021].  

High dimensional methods identify outliers in 
subspace or in extended conventional outlier 

detection, modeling outliers with a high degree 

of dimension. As a result, the most effective 

outlier detection methodology is to use the 
proximity or density method when dealing with 

high-dimensional data. 

Breunig et al. first introduce the notion of a local 

outlier factor. Give a degree of an outlier to each 
object. This degree is referred to as an object's 

local outlier factor value (LOF).  It is local in the 

sense that the degree is determined by how 

isolated the object is from its surroundings data 

point. The most method of density outliers 

detection depends on the framework of the 

LOF[Breunig at el, 2000].  

Shekhar, S. et al. provided a method for 

detecting spatial outliers in multidimensional 

traffic data. This approach's statistical model 

was defined and analyzed also gave a solid 
spatial outlier detection technique and cost 

model[Shekhar et al, 2002]. 

Fan, H. et al. presented nonparametric outlier 

identification with a new solution and data 
mining. The output of the outlier algorithm 

considers the dataset's local and global objects. 

The algorithm is tested using synthetic and real-

life datasets from large building contractors. 
Moreover, compared to a previous mining 

algorithm, this method was more effective and 

superior[Fan et al, 2006]. 

Gao, J. et al. propose a non-parameter detection 
of outliers with regression learning Using a 

Multi-scale Local Kernel Regression approach 

(MLKR) that computes outlier factors by 
merging information from several scale 

neighborhoods[Gao et al, 2010].  

Later, the same researchers used variable kernel 

density estimates to address the shortcomings of 

the LOF method's accuracy when the data set is 
enormous. Additionally, they used the weighted 

density neighborhood estimate for better 

robustness to parameter variations. They 
propose the Volcano kernel as a new way of 

detecting outliers[Gao et al, 2011]. 

Fink, O. et al. used a Multivariate kernel density 

estimation technique to find outliers. Another 

approach employs the "growing neural gas," an 
unsupervised algorithm based on artificial 

neural gas (GNG). In the field of railway turnout 

systems, these two methods are applied. Both 
techniques are effective in recognizing novel 

patterns. Furthermore, the GNG was the best 

choice for dimensionality in input data and 

online learning[Fink et al, 2015]. 

Sharma, S. et al. detecting outliers by kernel 
density estimation and assigning an outlier score 

to each data point. kernel function gave a 

smoother for the density estimation. By 
comparing the local density estimate of each 

object to the neighbors, an outlier score is 

assigned to each one. The kernel function and 
the outlier score are applied to discover the 

unusual pattern in the data[Sharma et al, 2015]. 
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Tang, B. and He, H. suggest a density-based 

approach for detecting local outliers. The Outlier 
Score is calculated based on Relative Density 

(RDOS). This measure of object local 

outlierness uses a local KDE technique based on 

the object's extended nearest neighbors to 
estimate its density distribution. The researchers 

used three neighbors (KNN, RNN, and SNN)[ 

Tang et al, 2017]. 

    This research will apply the methods for two 
metric distances (the Minkowski distance and 

the standardized Euclidean distance) for volcano 

kernel, kernel fun. SGR with second-order and 

RDOS by using multidimensional skilling. 

 

1. Methods  

Estimation of local kernel density 

     The density at a given location for an object 

is estimated via kernel density estimation based 
on a set of data points[Tang et al, 2017]. Let 

D={𝑐1, 𝑐2, … , 𝑐𝑛},  where 𝑐1,𝑐2 and 𝑐3 are data 

points in the set. Where 𝑐𝑖  𝜖 𝑅𝑑   𝑓𝑜𝑟  𝑖 =
1,2,3,4, … , 𝑛, the KDE is estimated as follows : 

𝑝(𝑐)

=  
1

𝑚
∑

1

ℎ𝑑

𝑚

𝑖=1

𝐾(
𝑐 − 𝑐𝑖

ℎ
)                                        (1) 

Where 𝐾(
𝑐−𝑐𝑖

ℎ
) denoted by the kernel function 

with the kernel width h, smoothing kernel is 

satisfied the following conditions: ∫ 𝐾(𝑢)𝑑𝑢 =
1 , ∫ 𝑢 𝐾(𝑢)𝑑𝑢 = 0 , ∫ 𝑢2𝐾(𝑢)𝑑𝑢 > 0. 

The following is a commonly used multivariate 
Gaussian kernel function in detecting outliers 

[Tang et al, 2017]: 

𝐾(
𝑐𝑖 − 𝑐𝑗

ℎ𝑗
)𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛

=
1

(2𝜋)𝑑
𝑒𝑥𝑝 (−

‖𝑐𝑖 − 𝑐𝑗‖
2

2 ∗ ℎ𝑗
2 )               (2)            

Where ‖𝑐𝑖 − 𝑐𝑗‖ The Euclidean distance 

between the points 𝑐𝑖 and 𝑐𝑗 . d: denotes 

dimensions, and h: represents the kernel 

bandwidth.  

Density estimation  

     To estimate the density at a particular 

location for the point 𝑐𝑖 is computed by 

considering its surrounding neighbors rather 

than considering all the points in the data set as 
kernels. As a result, Density estimation for the 

entire data set may result in the loss of local 

density differences and an inability to detect 

local outliers. Furthermore, using the whole data 
set to determine the outlier degree for each data 

point in the dataset results in substantial 

computing costs, particularly in O(𝑛2), where n 

is the total number of samples in the data set.  

the estimation of the density distribution will 

improve in the neighborhood for the data point 

to this method by presenting three types of 

neighbors (k nearest neighbors, reverse nearest 

neighbors, shared nearest neighbors)  

If NNj(ck) is the jth denote jth nearest neighbors 

for the point ck, let 𝑆𝐾𝑁𝑁(𝑐𝑘) be a set of K 

nearest neighbors of 𝑐𝑘 : 

KNN(ci)
= {NN1(ci), NN2(ci), . . . , NNk(ci)}          (3) 

For the RNNs for the point 𝑐𝑘 are those points 

that take into account 𝑐𝑘 as one of their KNNs, 

we mean that c is one of the RNNs of the 𝑐𝑘 as 

the NNj(c) = ci  for each j ≤ k. RNNs have 

zero, one or more points of data. In recent 

studies, the RNN has been successfully 
employed in clustering[Zhu et al, 2016] and 

classification[Tang et al, 2015] and has been 

present for best local distribution data 
information and applied to detect outliers[Jin et 

al, 2006].  

The shared nearest neighbors for the point 𝑐𝑘 are 

those points that share one or more of 𝑐𝑘 's 

nearest neighbors. c would be one of the SNNs 

for 𝑐𝑘 where  𝑁𝑁𝑗(𝑐) = 𝑁𝑁𝑠(𝑐𝑘) for all  𝑗, 𝑠 ≤

𝑘. 

Figure (1) display the three types of the nearest 

neighbors 
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Figure (1) illustration of the three types of nearest neighbors. 

We indicate that the set of reverse nearest 

neighbors as 𝑆𝑅𝑁𝑁𝑠(𝑐𝑘) and the set of the shared 

nearest neighbors as 𝑆𝑆𝑁𝑁𝑠(𝑐𝑘) for the point 𝑐𝑘. 

In the set 𝑆𝐾𝑁𝑁𝑠(𝑐𝑘), there would always be k 

nearest neighbors. whereas the two sets of 

𝑆𝑅𝑁𝑁𝑠(𝑐𝑘) and 𝑆𝑆𝑁𝑁𝑠(𝑐𝑘) is either empty or 

contains one or more items. 

The three sets of data 𝑆𝑆𝑁𝑁𝑠(𝑐𝑘), 𝑆𝑅𝑁𝑁𝑠(𝑐𝑘) and 

𝑆𝑆𝑁𝑁𝑠(𝑐𝑘) for the point 𝑐𝑘 By merging them, we 
build an expanded local neighborhood. Defined 

by: 

𝑆(𝑐𝑘) = 𝑆𝐾𝑁𝑁𝑠(𝑐𝑘) ∪ 𝑆𝑅𝑁𝑁𝑠(𝑐𝑘)
∪ SSNNs(𝑐𝑘)          (4) 

The location's estimated density for 𝑐𝑘 will 

equal to: 

 

𝑝(𝑐𝑘)

=  
1

|𝑆(𝑐𝑘)| + 1
 ∑

1

ℎ𝑑
𝑐 ∈𝑆(𝑐𝑘)∪{𝑐𝑘}

𝐾(
𝑐 − 𝑐𝑘

ℎ
)         (5) 

|𝑆| represents the total number of elements in S. 

 

RDOS calculation 

    After using KDE to calculate the density at all 

of the data points in the set. We will use an 

outlier factor based on relative density (RDOS) 
to calculate the degree of outlierness. When the 

data points 𝑐𝑘 deviate from their surroundings 

neighbors, and It can be explained as follows: 

𝑅𝐷𝑂𝑆𝐾(𝑐𝑘)

=  
∑ 𝑝(𝑐𝑖)𝑐𝑖∈𝑆(𝑐𝑘)

|𝑆(𝑐𝑘)|𝑝(𝑐𝑘)
                          (6)    

RDOS: is the average density neighborhood 

divided by the density of certain data point 𝑐𝑘. 

When 𝑅𝐷𝑂𝑆𝐾(𝑐𝑘) is significantly greater than 
1, and the data point will be located outside the 

dense cluster. implying that 𝑐𝑘 is an outlier, and 

when 𝑅𝐷𝑂𝑆𝐾(𝑐𝑘) is equal to or less than 1, then 

the data point 𝑐𝑘 would be encircled by the same 

density cloud of neighbors. Implying that 𝑐𝑘 is a 

normal data point. 

Using KNN graph to determind the sets of 

KNNs, RNNs and SNNs by the approximation 

computantional method for the cost of O(N). for 
each data point we put a local  set of nearest 

neighbors S with the collection of sets  

𝑆𝐾𝑁𝑁𝑠 , 𝑆𝑅𝑁𝑁𝑠  and SSNNs. The density will be 

calculated locally for the data point 𝑐𝑘 according 

to set S, we determine RDOS for all data points 

according to the densities of local 

neighborhoods in S. 

The top-n of outliers is defined by sorting the 
values of RDOS in descending way. When we 

want to decide whether the data point is an 

outlier or not, we compare the value of RDOS 

with the threshold value (𝜏) (this value is pre-

determined according to the researcher 

experience). If 𝑅𝐷𝑂𝑆𝐾(𝑐𝑘) is satisfied, then the 

point is an outlier. 

RDOSk (𝑐𝑘)  > τ                   (7) 

 

Volcano kernel method 

     This function is presented to avoid the 

drawbacks in the Gaussian kernel for anomaly 

estimation. We mean that in some methods that 

use a Gaussian kernel, we cannot guarantee that 
the normal data point is approximately equal to 

one for the outlier score, so we must use a 

threshold value (𝜏). 
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The volcano kernel [Gao et al, 2011],[ Hu et al, 

2018] is determined as follows: 

𝐾(𝑐) = {
     β                 if ‖c‖  ≤ 1

     βg(‖𝑐‖)      otherwise
        (8) 

Where β ensures that kernel function is a 

probability density function, the condition of 

K(c) integration is equal to 1. g(c) is a function 
that decreases monotonically, with the close 

interval [0,1], and at infinity, equal to zero. The 

𝑔(𝑐) = 𝑒−|𝑐|+1 as a standard function in this 

method.  

in a univariate feature space, figure () illustrates 

the curve of the Volcano kernel function. The 

kernel value equals a constant β when ‖c‖  ≤  1. 

This guarantees that the outlier scores of 

samples within a cluster are close to 1. When 
‖c‖ > 1, Kernel value is less than one and 

decreases monotonically as ‖c‖ grows. 

As a result, the outlier score for anomalies is 

substantially greater than one. 

 

Figure (2) the curve of the Volcano kernel function in univariate space[Gao et al, 2011],[ Hu et 

al, 2018]. 

The Volcano kernel was created to identify 
anomalies. Its goal is to develop outlier scores 

for a normal sample close to 1, and for the 

anomaly, the outlier scores are more than 1. The 
neighborhood number k required by our 

Volcano kernel is smaller than that needed for 

the Gaussian kernel. The normal samples make 

up the vast majority of the dataset. The random 

variable ‖c‖ has values between -1 and 1. figure 

(2) shows the densities for our Volcano kernel 

when ‖c‖ is between [-1,1]. Using the Volcano 
kernel to estimate the density of a sample 

requires fewer neighboring samples than using 

the Gaussian kernel. As a result, the Volcano 

kernel requires a smaller k neighbors value. 

 

SGR kernel method 

     the kernel function SGR of order 2 [Sharma 
et al, 2015], this function is a PDF the integral 

of the SGR function is equal to 1, its an 

asymmetric function, finite even moments, zero 

odd moments. 

𝐾𝑆𝐺𝑅,ℎ =
1

2.374𝜋
(5 − 4𝑐2)     𝑓𝑜𝑟   |𝑐|

< √5/4              (9)  

Where h: is the optimal bandwidth that counted 

by minimizing MISE of equation (1) : 

 

𝑀𝐼𝑆𝐸(𝑓(𝑐)) ≈
1

4
ℎ4𝑀2

2(𝐾) 𝑅(𝑓′′)

+
1

𝑛ℎ
𝑅(𝐾)          (10) 

using the partial derivative of MISE to h and as 

well as setting it to zero: 

ℎ𝑜𝑝𝑡

= [
𝑅(𝐾)

𝑀2
2(𝐾)𝑅(𝑓′′) 𝑛

]

1/5

                                          (11) 

Where 𝑅(𝐾) = ∫ 𝐾2(𝑢)𝑑𝑢 , the  𝑀2(𝐾) =

∫ 𝑢2𝐾(𝑢)𝑑𝑢 is the second moment of kernel 

function of equation (1) and 𝑅(𝑓′′)  =

∫ 𝑓′′(𝑐)2𝑑𝑐. 

In this approach, we will use the plug-in 

bandwidth estimator for ℎ𝑜𝑝𝑡 . By putting 

𝑅(𝑓′′) = Ψ4 in equation (11) because the 

formula is unapplicable, so the formula will be: 

ℎ𝑝𝑙𝑢𝑔−𝑖𝑛

= [
𝑅(𝐾)

𝑀2
2(𝐾) Ψ4 𝑛

]

1
5

                                           (12) 
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Where Ψ4 = 𝐸(𝑓4(𝑐)) and  Ψ4(𝑔) =
1

𝑛
∑ 𝑓4(𝑐𝑖)𝑛

𝑖=1  

Ψ𝑟

=
−1

𝑟
2⁄  𝑟!

(2𝜎)𝑟+1 (𝑟
2⁄ )! √𝜋

                                             (13) 

 

We get the MISE optimal by substituting ℎ𝑜𝑝𝑡  of 

equation (11) in the value of MISE in equation 

(10): 

𝐴𝑀𝐼𝑆𝐸𝑜𝑝𝑡

=
5

4
 (𝑅2(𝐾)𝑀2

2(𝐾)𝑅(𝑓′′))

1
5

 𝑛−4/5        (14) 

In this research, we will use Multidimensional 

skilling. There are two types: metric and non-

metric in the metric method, calculate the 
distance by the Euclidean distance. The non-

metric way uses other methods for calculation 

distance. Multidimensional scaling is highly 

similar to principal component analysis (PCA). 
It transforms distances between variables rather 

than correlation or covariance into a two-

dimensional graphic. 

The graph will be precisely the same as the PCA 
graph if we calculate MDS between variables 

using the Euclidian distance.  In other words, 

clustering based on distance minimization is 

equivalent to maximizing linear correlations 
between the points. So we use another way to 

calculate distances like Minkowski distance, 

standardized Euclidean distance, Hamming 
distance, Great circle distance, Manhattan 

distance, log fold change distance etc.  

 In this research, we use the two metric distances 

(Minkowski distance[Wachowicz et al, 2013], 

standardized Euclidean distance[Rao, 2012]) in 

the MDS[Manly et al, 2016]. 

the Minkowski distance can be calculated from 

the formula: 

(∑|𝑥𝑖 − 𝑦𝑖|𝑛

𝑛

𝑖=1

)

1
𝑛⁄

                 (15) 

This formula can be equal to manhattan distance 

when n=1, Euclidean distance when n=2, and 

Chebyshev when n= infinity. 

 

Figure 3: illustrate the Minkowski distance for 

different data values[Wachowicz et at, 2013]. 

 

The standardized Eucleadian distance between 

two vectors of dimension j is given by: 

𝑑𝑥,𝑦 = √∑ (
𝑥𝑗

𝑠𝑗
−

𝑦𝑗

𝑠𝑗
)

2𝑛

𝑗=1

 

= √∑
1

𝑠𝑗
2 (𝑥𝑗 − 𝑦𝑗)

2𝑛

𝑗=1

 

= √∑ 𝑤𝑗(𝑥𝑗 − 𝑦𝑗)
2𝑛

𝑗=1            (16) 

Where  

𝑤𝑗 = 1 𝑆𝑗
2⁄  

 

the criterion for evaluating the performance of 
outlier approaches in this paper is Precision(P)[ 

Xu et al, 2018], it is defined as the ratio that 

divided the number of correct outliers by the 

total number of points that filtered to be outliers: 

                        𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑚

𝑡
                                      (17) 

m=number of correct outliers that found in the 

set, t=total number of points that filtered to be 

outliers. 

 

3. Experiment Analysis and Result 

     The dataset is about three groups of random 

numbers naturally generated according to the 
normal distribution of mean= 0 and variance 0.5. 

These groups are represented in three different 
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sizes ( N=50, N=100, N= 150). Three 

explanatory variables were generated (P= 3, 
P=5, P=7). The nearest neighbours are in the 

range (2 to 10). And the number of iterations for 

each dataset and explanatory variables is (itr 

=100) according to Tabel (1). Several 

experiments were conducted. 

 

Table 1: The order of initial variables is determined by the variable's size and the sample size. 

Explanatory variables Sample size  nearest neighborhood 

3 50  100  150  2,3,4,5,6,7,8,9,10 

5 50  100  150  2,3,4,5,6,7,8,9,10 

7 50  100  150  2,3,4,5,6,7,8,9,10 

 

RDOS, SGR, and Volcano kernel are The 

methods were applied to the simulated data set 

of size (N = 50) with three explanatory variables 

(3, 5, and 7), with Standardized Euclidean 
distance and Minkowski distance as shown in 

Table(2) and Tabel (3) as shown below. The 

average number of outliers for the SGR method 
increases when K nearest neighbors increase 

to10. While the RDOS and VOL methods, the 

average number of outliers decreases when we 
increase the numbers of K nearest neighbors. 

Figures 4, 6, 8, 5, 7 and 9 explain the difference 

between these two distances in the three 

methods. 

The same methods applied for sample size ( 
N=100) and the three variables (3, 5, 7) tables 4, 

5 show that when the number of variables is 

equal to three, in the SGR method, the average 
number of outliers by using Minkowski distance 

was higher than Standardized Euclidean 

distance. While in the RDOS and The VOL, 

little fluctuated between increasing and 

decreasing in the two metric distances.  

When the number of variables is (5,7), the 

average number of outliers in the SGR and 

RDOS methods is smaller in Minkowski 

distance than the standardized Euclidean 

distance.  

And when we have five variables in the VOL 

method, the average number of outliers using 

Minkowski distance is lower at the beginning, 
then becomes equal to the value of the 

standardized Euclidean distance as the number 

of k nearest neighbors increases to 10. And when 
the number of variables is seven in the vol 

method, the average number of outliers 

fluctuated between decreasing and increasing by 

using the two metric distances as the number of 
nearest neighbors rose to 10. The figures (10, 12, 

14, 11,13 and 15) illustrate the increase and 

decrease in the methods (SGR, RDOS and 

EPA).  

 

For sample size (150) for the three different 

variables (3, 5 and 7) in the SGR method, the 

average number of outliers in Minkowski 

distance is larger than the standardized 
Euclidean distance. Still, for the RDOS and 

VOL methods, the average is fluctuated between 

increasing and decreasing using the two 
distances as the number of k nearest neighbor 

increases. The figures (16, 18, 20, 17, 19 and 

21). 
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SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 35 22 27 36 21 30 35 15 32

3 36 18 24 37 15 22 36 12 27

4 36 15 29 37 14 26 36 11 19

5 36 13 21 38 13 16 37 11 12

6 37 12 18 38 13 9 37 11 9

7 37 12 13 39 13 1 38 11 4

8 38 13 6 39 13 3 38 11 9

9 38 13 2 39 13 2 38 11 5

10 38 13 3 39 13 1 39 11 1

Table  2:  The results of 50 observations for the methods with sample 100 replicate for Standardized 

Euclidean distance 

Average number of outlier

  K   
3 5 7

SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 35 23 24 35 22 30 34 22 29

3 35 16 24 35 16 27 34 16 26

4 35 14 29 36 14 28 34 15 23

5 36 13 15 36 14 13 35 15 10

6 36 13 7 37 13 10 35 15 5

7 36 13 3 37 13 3 36 15 3

8 36 13 3 37 13 3 36 15 3

9 37 12 1 37 13 6 36 15 3

10 37 13 3 37 13 3 36 15 3

Average number of outlier

  K   
3 5 7

Table  3:  The results of 50 observations for the methods with sample 100 replicate for 

Minkowski distance

SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 66 56 61 69 56 62 72 53 52

3 65 48 49 70 41 63 72 35 50

4 66 39 30 70 30 44 73 28 43

5 66 31 36 71 24 42 74 25 34

6 67 27 37 71 22 17 75 23 42

7 68 25 14 71 21 21 75 23 14

8 68 23 23 72 21 16 76 22 8

9 69 22 12 73 21 7 77 22 6

10 69 22 10 74 21 17 77 22 2

Table 4: The results of 100  observation for the methods with 100 replicate for Standardized 

Euclidean distance 

Average number of outlier

K
3 5 7
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SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 68 55 61 68 52 56 70 50 58

3 67 47 52 69 39 51 71 34 57

4 68 37 43 70 30 42 71 26 42

5 68 30 43 70 24 47 73 24 38

6 69 25 27 71 22 15 73 23 30

7 70 23 22 71 21 8 74 22 13

8 70 22 7 72 20 13 75 22 9

9 71 22 13 72 20 2 75 21 10

10 71 22 11 72 20 1 76 22 1

Average number of outlier

  K   
3 5 7

Table 5: The results of 100 observations for the methods with 100 replicate for Minkowski 

distance   

SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 98 81 73 100 84 94 105 78 87

3 99 73 82 102 74 79 105 64 94

4 99 66 45 102 59 60 106 49 54

5 99 55 60 103 46 67 107 38 60

6 100 47 59 104 38 57 108 34 48

7 101 41 19 105 35 50 109 32 36

8 101 37 29 105 33 45 110 30 46

9 102 35 27 106 32 27 110 30 28

10 102 32 29 107 31 24 111 30 25

Table 6: The results of 150  observation for the methods with 100 replicate for Standardized 

Euclidean distance 

Average number of outlier

  K   
3 5 7
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SGR RDOS VOL SGR RDOS VOL SGR RDOS VOL

2 106 82 83 102 83 69 103 81 79

3 107 66 77 103 72 72 104 61 71

4 107 48 68 105 58 91 105 44 70

5 108 38 58 105 46 56 106 36 63

6 110 34 47 106 38 40 107 32 62

7 111 31 41 107 33 16 107 30 27

8 111 30 41 107 30 29 108 29 33

9 112 29 25 108 29 22 110 28 13

10 114 28 17 108 29 19 110 28 17

Table 7: The results of 150 observations for the methods with 100 replicate for Minkowski distance   

Average number of outlier

  K   
3 5 7
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Table 8: the precision ratio of three sample sizes (50, 100 and 150) and with k from (2 to 10). 

 

Table 8 explains the precision ratio of the 

RDOS, and the VOL decreases as the number of 

NN approaches 10. In contrast, the precision 

ratio for the SGR increases as the NN increases. 

And the VOL method has the most decreasing 

ratio 

 

4. Discussion 

We may see from the above result that the 
average number of outliers will significantly 

increase when we increase the number of 

neighbors in the GSR method. While the other 
two methods (RDOS and VOL), when the 

number of nearest neighbors increases, the 

average number of outliers decreases.  

When we compare the standardized Euclidean 
distance with Minkowski distance for the 

sample size equals (50, 100), there is a slight 

difference in the average number of outliers. The 

average approximately became stable when 

nearest neighbors between (6 to 10). 

And for sample size (150), the average number 

of outliers was a little fluctuated as the number 

of neigbors increased to 10. 
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